皇冠网社区-皇冠网足球足球投注平台

1月17日 李韞博士學術報告(數學與統計學院)

來源:數學行政作者:時間:2024-01-15瀏覽:285設置

報 告 人:李韞 博士

報告題目: Edge imits of the truncated circular beta ensembles

報告時間:2024年1月17日(周三)上午10:00-11:00

報告地點:靜遠樓1709學術報告廳

報告人簡介:

       李韞,清華大學丘成桐數學科學中心博士后。本科畢業于南開大學,博士畢業于美國威斯康星大學麥迪遜分校,導師為Benedek Valko教授。研究領域為隨機矩陣,具體研究的問題包括高維隨機矩陣的譜分析和Beta系綜的極限等問題。

報告摘要:

       Consider the circular unitary ensemble with the first row and column deleted, the resulting model is sub-unitary with eigenvalues lying inside the unit disk. Zyczkowski and Sommers derived the joint eigenvalue distribution of a truncated circular unitary ensemble, and showed they form a determinantal point process. Taking the limit of these points (without any additional scaling) one obtains the zeros of the Gaussian analytic function studied by Peres and Virag.  

       Killip and Kozhan provided a random matrix model that can be considered as the truncated circular beta ensemble (with beta = 2 corresponding to the unitary case), and described the spectrum via a random recursion. We derive and describe the point process limit of the truncated circular beta ensemble (near 1) together with the scaling limit of the normalized characteristic polynomials. We also treat multiplicative rank one perturbation of the models. The limiting objects are closely connected to the random analytic function appearing as the limit of the normalized characteristic polynomials of the (full) circular beta ensemble. Based on joint work with Benedek Valko.


 

 



返回原圖
/

大发888官网吧| 视频百家乐官网攻略| 澳博线上娱乐| 澳门百家乐官网开户投注| 威尼斯人娱乐城首选802com| 百家乐官网必胜密| 德州扑克专业版| 至尊百家乐qvod| 禹州市| 大发888官方sscptdf88yb| 百家乐补牌规律| 爱博彩论坛| 百家乐赌博凯时娱乐| 大发888官网黄金版| 百家乐怎么下注能赢| 澳门百家乐官网赢钱秘| 百家乐7人桌布| 塑料百家乐官网筹码| 同城乐| 威尼斯人娱乐网送38元彩金| 风水24山图| 文化| bet365备用器下载| 梦幻城百家乐官网的玩法技巧和规则 | 大发888游戏平台hg| 百家乐平台那家好| 赌百家乐官网的玩法技巧和规则| 凤凰百家乐官网娱乐城| 明升 | 真人百家乐试玩游戏| A8百家乐官网娱乐| 百家乐官网洗码方法| 新葡京娱乐| 棋牌室名字| 大发888集团| 大发888赢钱| 杭州太阳城假日酒店| 全讯网直播| 澳门百家乐怎么下载| 百家乐赌博平台| 如东县|