皇冠网社区-皇冠网足球足球投注平台

12月15日 馮衍全教授學(xué)術(shù)報(bào)告(數(shù)學(xué)與統(tǒng)計(jì)學(xué)院)

來源:數(shù)學(xué)行政作者:時(shí)間:2024-12-12瀏覽:75設(shè)置

報(bào) 告 人:馮衍全 教授

報(bào)告題目:Semiregular and quasi-semiregular automorphisms of digraphs

報(bào)告時(shí)間:2024年12月15日(周日)下午3:00

報(bào)告地點(diǎn):靜遠(yuǎn)樓1508會(huì)議室

主辦單位:數(shù)學(xué)與統(tǒng)計(jì)學(xué)院、數(shù)學(xué)研究院、科學(xué)技術(shù)研究院

報(bào)告人簡(jiǎn)介:

       馮衍全,北京交通大學(xué)二級(jí)教授,自1997年獲北京大學(xué)理學(xué)博士學(xué)位以來,一直從事代數(shù)與組合,群與圖以及互連網(wǎng)絡(luò)方面研究。現(xiàn)任中國(guó)工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會(huì)理事、中國(guó)數(shù)學(xué)會(huì)理事等,代數(shù)組合JACO等雜志編委。2010年主持《圖的對(duì)稱性》獲教育部?jī)?yōu)秀成果二等獎(jiǎng),2011年獲政府特殊津貼。共發(fā)表SCI科研論文150余篇,主持完成國(guó)家自然科學(xué)基金10余項(xiàng),包括重點(diǎn)項(xiàng)目1項(xiàng)。正在承擔(dān)國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目1項(xiàng)、面上項(xiàng)目1項(xiàng)、國(guó)際合作研究項(xiàng)目1項(xiàng)。

報(bào)告摘要:

       Let G be a permutation group on a finite set Omega . An non-identity element g in G is said to be semiregular if every cycle in the unique cycle decomposition of g has the same length, and quasi-semiregular if g has an unique 1-cycle in the cycle decomposition of g and every other cycle has the same length. An automorphism of a digraph is called semiregular or quasi-semiregular if it is a semiregular or quasi-semiregular permutation on the vertex set of the digraph. The permutation group G is called 2-closed if G is the largest subgroup of the symmetric group S_Omega on Omega with the same orbits as G on Omega× Omega.

       In 1981 Fein, Kantor and Schacher proved that a transitive permutation group on a finite set with degree at least 2 has an element of prime-power order with no fixed point, but may not have a semiregular element. In the same year, Marusic conjectured that every finite vertex-transitive digraph has a semiregular automorphism, and in 1995, Klin proposed the well-known Polycirculant Conjecture: Every 2-closed transitive permutation group has a semiregular element. Note that the automorphism group of any digraph is 2-closed. In 2013, Kutnar, Malnic, Martanez and Marusic proposed the quasi-semiregular automorphism of a digraph and investigated strongly regular graphs with such an automorphism.

        A lot of work relative to semiregular or quasisemiregular automorphisms of digraphs has been done and in this talk, we review some progress on this line. Furthermore, we talk about a recent work by Yin, Feng, Zhou and Jia [Journal of Combinatorial Theory B 159 (2023) 101-125] on prime-valent symmetric graphs with a quasi-semiregular automorphism.



返回原圖
/

7人百家乐中号桌布| 大发888优惠代码 官网| 巴黎百家乐地址| 国际豪门娱乐| 百家乐是否有规律| 百家乐半圆桌| 广东百家乐官网扫描分析仪| 百家乐官网平客户端| 利记国际娱乐| 678百家乐博彩娱乐网| 真人百家乐官网开户须知| 金世豪百家乐的玩法技巧和规则| 迪威百家乐官网赌场娱乐网规则| 致胜百家乐官网的玩法技巧和规则 | 云鼎百家乐作弊| 新东方百家乐官网的玩法技巧和规则 | 足球竞猜规则| 百家乐怎么样投注| 百家乐官网谋略| 泸水县| 百家乐下| 百家乐怎么看单| 大发娱乐城888| 百家乐官网下注法| 百家乐官网二十一点| 属虎与属鼠做生意好吗| 百家乐官网书包| 鄂尔多斯市| 网上最好赌博网站| 百家乐群到shozo网| 百家乐tt娱乐网| 赌场百家乐规则| 崇仁县| 网上在线赌场| 百家乐真人游戏| 百家乐扑克筹码| 百家乐棋牌作弊器| 百家乐博彩金| 百家乐娱乐城会员| 永利高百家乐开户| 请问下百家乐官网去哪个娱乐城玩最好呢 |